Comparative Analysis of Restock Needs Bottled Water Using K-Nearest Neighbor (K-NN), Support Vector Machine (SVM), and the Naïve Bayes Algorithm
DOI:
https://doi.org/10.61398/ijist-das.v1i1.7Keywords:
Restock needs goods, Machine learning, Prediction model, Comparative analysis, Accuracy ValueAbstract
Restocking goods is essential for bottled drinking water to ensure smooth production and maintain a stable product supply. This research aims to compare the K-Nearest Neighbor, Support Vector Machine, and the Naïve Bayes algorithm to predict the need to restock bottled water. The data set for training and training data is taken from Adimaru's Agent. The comparative analysis with three algorithms gives the results of the prediction analysis for the accuracy value of K-NN is 88.20%, SVM is 84.51%, and Naïve Bayes is 66.20%. The AUC values of the three result algorithms include Good Classification. The comparison of the K-NN and SVM with T-Test algorithms obtained the best performance with an alpha value is 0.102. From this accuracy value, the classification method of the K-Nearest Neighbor algorithm has the best predictive model results for restocking needs of bottled water goods.
References
N. A. Fetrizen, “Analisis Pengaruh Kualitas Produk, Harga, Promosi terhadap Keputusan Pembelian Air Minum dalam Kemasan (AMDK) Merek AICOS Produksi PT. Bumi Sarimas Indonesia,” OSF Prepr., vol. 1, pp. 1–9, 2019.
Mi. Pratama Putra, M. Ariandi, M. Bina Darma, and D. Bina Darma, “Penerapan Data Mining Untuk Memprediksi Tingkat Ketepatan Jumlah Penjualan Produk Air Mineral Pada Pt. Mars Lestari,” … Prod. Air Miner. Pada Pt. Mars …, pp. 20–33, 2022.
R. Alfian, Y. Krishna, F. M. Sari, and W. Heriyani, “Bisnis Menjanjikan Air Dalam Kemasan,” Ekonomi, 2022. .
C. Janiesch, P. Zschech, and K. Heinrich, “Machine Learning and Deep Learning,” Ingeniare, vol. 29, no. 2, pp. 182–183, 2021.
N. Ayuningtyas, R. Nining, and F. M. Basysyar, “Penerapan Data Mining pada Penjualan Produk MS Glow Menggunakan Metode Naive Bayes untuk Strategi Pemasaran,” J. Account. Inf. Syst. (AIMS, vol. 5, no. 2, pp. 156–166, 2022.
W. Lestari and S. Sumarlinda, "Implementation Of K-Nearest Neighbor (KNN) AND Support Vector Machine (SVM) For Clasification Cardiovascular Disease," Int. J. Multiscience, vol. 2, no. 10, pp. 30–36, 2022.
S. Saikin and K. Kusrini, “Model Data Mining Untuk Karekteristik Data Traveller Pada Perusahaan Tour and Travel,” J. Manaj. Inform. dan Sist. Inf., vol. 2, no. 2, p. 61, 2019.
A. Wenda, “Support Vector Machine Untuk Pengenalan Bentuk Manusia Menggunakan Kumpulan Fitur Yang Dioptimalkan,” JST (Jurnal Sains dan Teknol., vol. 11, no. 1, pp. 77–84, 2022.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.
M. Azhari, S. Zakaria, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021.
M. E. Lasulika, “Komparasi Naïve Bayes, Support Vector Machine Dan K-Nearest Neighbor Untuk Mengetahui Akurasi Tertinggi Pada Prediksi Kelancaran Pembayaran Tv Kabel,” Ilk. J. Ilm., vol. 11, no. 1, pp. 11–16, 2019.
D. A. Anggoro and N. D. Kurnia, "Comparison of accuracy level of support vector machine (SVM) and artificial neural network (ANN) algorithms in predicting diabetes mellitus disease," ICIC Express Lett., vol. 15, no. 1, pp. 9–18, 2021.
S. Sumarlinda, D. A. B. R. Rahmat, and A. P. Z. B. A. Long, "Comparative Analysis of Cardiovascular Diseases Prediction Model Using Decision Tree Learning and Backpropagation Artificial Neuro Network," pp. 0–4, 2023.
G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020.
I. Arpaci, S. Huang, M. Al-Emran, M. N. Al-Kabi, and M. Peng, "Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms," Multimed. Tools Appl., vol. 80, no. 8, pp. 11943–11957, 2021.
R. Maulana and D. Kumalasari, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Status Kelulusan Mahasiswa Akademi Bina Sarana Informatika,” J. Inform. Kaputama, vol. Juni, no. Semantik, pp. 241–249, 2019.
T. K. Kim and J. H. Park, "More about the basic assumptions of t-test: Normality and sample size," Korean J. Anesthesiol., vol. 72, no. 4, pp. 331–335, 2019.
M. N. Ab Wahab, A. Nazir, A. T. Z. Ren, M. H. M. Noor, M. F. Akbar, and A. S. A. Mohamed, "Efficientnet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi," IEEE Access, vol. 9, pp. 134065–134080, 2021.
Mulyawan, A. Bahtiar, G. Dwilestari, F. M. Basysyar, and N. Suarna, "Data mining techniques with machine learning algorithm to predict patients of heart disease," IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012035, 2021.
I. Parlina et al., "Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category," J. Phys. Conf. Ser., vol. 1255, no. 1, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ruri Faujana Dinda Pratiwi, Sri Sumarlinda , Faulinda Ely Nastiti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons License Statement CC BY 4.0
You are allowed:
Sharing — copy and redistribute this material in any form or format;
Adaptation — modifying, modifying, and making derivative works of this material for any use, including commercial purposes.
The licensor cannot revoke the foregoing as long as you comply with the following license conditions.
Attribution — You must provide an appropriate name, provide a link to the license, and acknowledge that changes have been made. You can do this in a suitable, but not too sweet, way that the licensor supports you or your use.
There are no additional constraints — you cannot use legal terms or technological controls that legally restrict others from doing the things this license permits.